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Preface

A course in discrete structures (discrete mathematics) played an important role 
in Curriculum 68, the very first ACM Computer Science Curriculum Guide: 
“This course introduces the student to those fundamental algebraic, logical, and 
combinatoric concepts from mathematics needed in the subsequent computer 
science courses and shows the applications of these concepts to various areas 
of computer science.”1 Fast forward 45 years or so (through mobile comput-
ing, wireless networks, robotics, virtual reality, 3-D graphics, the Internet …)  
to the joint ACM/IEEE-CS Computer Science Curricula 2013, where—still—
discrete structures are of fundamental importance. “The material in discrete 
structures is pervasive in the areas of data structures and algorithms but ap-
pears elsewhere in computer science as well. For example, an ability to create 
and understand a proof—either a formal symbolic proof or a less formal but 
still mathematically rigorous argument—is important in virtually every area of 
computer science, including (to name just a few) formal specification, verifica-
tion, databases, and cryptography. Graph theory concepts are used in networks, 
operating systems, and compilers. Set theory concepts are used in software 
engineering and in databases. Probability theory is used in intelligent systems, 
networking, and a number of computing applications.”2

This Seventh Edition was guided by Curricula 2013, and virtually all of the 
Core Tier 1 and Tier 2 topics for discrete structures from that document are includ-
ed. Covering all those topics can fill a one-semester course, but there is certainly 
enough material in this edition to make for a very respectable two-semester course.

However much we as instructors may see the value in this foundational 
course, it is a difficult experience for many students, who often view it as a series 
of unconnected topics with little or no application to the rest of their chosen field 
of study. In the big picture, these topics are bound together by themes of

•	 importance of logical thinking
•	 power of mathematical notation
•	 usefulness of abstractions

but such themes are best appreciated in hindsight. Telling students, “You will 
need ideas from this course in many of your future computer science courses,” 
is also of little motivation. That’s why it is important to carve out time in your 
course syllabus (for either a one-semester or two-semester course) for some of 
the applications of this material. Here are topics in this edition that you may 

1Communications of the ACM, Vol. 11, Issue 3 (March 1968), pp. 151–197.	
2Computer Science Curricula 2013, Pre-release version, http://cs2013.com

http://cs2013.com
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choose from, according to your interests and the interests of your students. Yes, 
students will probably see most of these topics in more detail in later computer 
science courses, but a quick introduction now can keep their interest and make 
your claim of relevance more credible.

Section 1.5	 Logic programming
Sections 1.6 and 2.3	 Proof of correctness
Section 3.3	 Analysis of algorithms
Section 5.3	 Relations and databases
Section 5.6	 The mighty mod function
Section 6.4	 Huffman codes
Section 8.2	 Logic networks
Section 9.2	 Coding theory

In addition, there is a Special Interest Page in each chapter that highlights 
interesting applications culled from “the real world.”

Ne  w i n  the  S e v e nth E d it ion

•	 The former Chapters 2 and 3 have been reorganized as Chapters 2, 3, and 
4 for better clarity and sequencing

•	 New sections or subsections have been added:

Probability
•	 Bayes’ Theorem
•	 Binomial Distribution

Order of Magnitude (new section)
•	 The Master Theorem
•	 Proof of the Master Theorem

Matrices
•	 Gaussian Elimination

Coding Theory (new section)
•	 Introduction
•	 Background: Homomorphisms and Cosets
•	 Generating Group Codes
•	 Decoding Group Codes

•	 “Special interest pages”—one per chapter—have been introduced to add 
relevance and interest to the material being presented.

•	 Answers to all odd-numbered exercises, as opposed to answers to fewer, 
selected exercises, appear in the back of the book. When an exercise asks 
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for a proof, the complete proof is given. Otherwise, the answer is just 
the answer, not necessarily the solution. A Student Solutions Manual with 
solutions for odd-numbered exercises from the book is available from the 
Web site at www.whfreeman.com/gersting. The student manual also in-
cludes two sample tests per chapter. A complete Solutions Manual is avail-
able to instructors from the publisher.

•	 Many new exercises have been added, particularly with an eye toward 
pairing odd-numbered exercises with similar even-numbered exercises.

•	 Of course, student learning aids such as chapter objectives, practice prob-
lems, reminders, section reviews, and chapter reviews remain.

Web  S ite

Online Study Guide

A Web site for the book may be found at www.whfreeman.com/gersting. The Web 
pages contain representative new example problems (not contained in the text) for 
many of the end-of-section Techniques. Each Technique that has a corresponding 
Web page example is marked with the icon W  .

Each example on the Web first states the problem. Then succeeding pages 
develop the solution, much as the student would be expected to write it. As the stu-
dent navigates the pages, the solution unfolds step-by-step. A compressed audio 
file is also part of each Web page after the initial problem statement. The audio file 
contains a first-person stream-of-consciousness thought process about that step of 
the solution—why it occurred to the narrator to try this, why it looked promising, 
what knowledge was being called on to suggest that this step should come next, 
and so on. The point is, students see perfect and complete worked-out proofs in 
the textbook and often see them performed by the instructor. Yet when a student 
goes home and tries to produce such a solution by himself or herself, he or she is 
unsure where to start or how to think about the problem or how to see any pat-
tern to enable a guess as to what to do next. Consequently the student gives up in 
frustration. The purpose of the audio narration is to share the “secret picture” that 
mathematicians use to solve problems.

To access the problems, after you go to www.whfreeman.com/gersting, select 
a chapter section, then select a sample problem and follow its step-by-step process 
with the “Next” button.

PowerPoint Slides

Instructors who visit the web site will also have access to PowerPoint slides 
accompanying each section of the text.

www.whfreeman.com/gersting
www.whfreeman.com/gersting
www.whfreeman.com/gersting
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Note to the  Stu d e nt

As you go through this book, you’ll encounter many new terms and new ideas. 
Try reading with pencil and paper at hand and work the Practice problems as you 
encounter them. They are intended to reinforce or clarify some new terminology 
or method just introduced; answers are given at the back of the book. Pay atten-
tion also to the Reminders that point out common pitfalls or provide helpful hints. 

Be sure to visit the Web site at www.whfreeman.com/gersting for detailed, 
worked-out solutions to additional example problems tied to the Techniques in 
each section. The Web site solutions are accompanied by audio files that explain 
each step. A Student Solutions Manual with solutions for odd-numbered exercises 
from the book is available from the Web site. The student manual also includes two 
sample tests per chapter.

You may find at first that the thought processes required to solve the exercises 
in the book are new and difficult. Your biggest attribute for success will be persever-
ance. Here’s what I tell my students: “If you do not see at first how to solve a problem, 
don’t give up, think about it some more; be sure you understand all the terminology 
used in the problem, play with some ideas. If no approach presents itself, let it be 
and think about it again later. Repeat this process for days on end. When you finally 
wake up in the middle of the night with an idea, you’ll know you are putting in the 
right amount of effort for this course.” Mathematical results don’t spring fully formed 
from the foreheads of mathematical geniuses; well, maybe from mathematical ge-
niuses, but for the rest of us, it takes work, patience, false starts, and perseverance.

Enjoy the experience!

www.whfreeman.com/gersting


Chapter Objectives

After studying this chapter, you will be able to:

•	 Use the formal symbols of propositional logic.
•	 Find the truth value of an expression in propositional logic.
•	 Construct formal proofs in propositional logic, and use such proofs to deter-

mine the validity of English language arguments.
•	 Use the formal symbols of predicate logic.
•	 Find the truth value in some interpretation of an expression in predicate logic.
•	 Use predicate logic to represent English language sentences.
•	 Construct formal proofs in predicate logic, and use such proofs to determine 

the validity of English language arguments.
•	 Understand how the programming language Prolog is built on predicate logic.
•	 Mathematically prove the correctness of programs that use assignment state-

ments and conditional statements.

You have been selected to serve on jury duty for a criminal case. The attorney for the 
defense argues as follows: 

If my client is guilty, then the knife was in the drawer. Either the knife was not in the 
drawer or Jason Pritchard saw the knife. If the knife was not there on October 10, 
it follows that Jason Pritchard did not see the knife. Furthermore, if the knife was 
there on October 10, then the knife was in the drawer and also the hammer was in 
the barn. But we all know that the hammer was not in the barn. Therefore, ladies 
and gentlemen of the jury, my client is innocent.

	 Question: 	 Is the attorney’s argument sound? How should you vote?

It’s much easier to answer this question if the argument is recast in the notation 
of formal logic. Formal logic strips away confusing verbiage and allows us to 
concentrate on the underlying reasoning being applied. In fact, formal logic—the 
subject of this chapter—provides the foundation for the organized, careful method 
of thinking that characterizes any reasoned activity—a criminal investigation, a 
scientific experiment, a sociological study. In addition, formal logic has direct 
applications in computer science. The last two sections of this chapter explore 
a programming language based on logic and the use of formal logic to verify 
the correctness of computer programs. Also, circuit logic (the logic governing 

1Formal Logic

Chapter



2	 Formal Logic

computer circuitry) is a direct analog of the statement logic of this chapter. We 
will study circuit logic in Chapter 8.

	 S e c t i o n  1 . 1 	 Statements, Symbolic Representation, 
and Tautologies

Formal logic can represent the statements we use in English to communicate facts 
or information. A statement (or proposition) is a sentence that is either true or 
false.

	E XAMPLE 1	 Consider the following:

	 a.	 Ten is less than seven.
	 b.	 Cheyenne is the capital of Wyoming.
	 c.	 She is very talented.
	 d.	 There are life forms on other planets in the universe.

Sentence (a) is a statement because it is false. Sentence (b) is a statement because 
it is true. Sentence (c) is neither true nor false because “she” is not specified; there-
fore (c) is not a statement. Sentence (d) is a statement because it is either true or 
false; we do not have to be able to decide which.

Connectives and Truth Values

In English, simple statements are combined with connecting words like and to 
make more interesting compound statements. The truth value of a compound 
statement depends on the truth values of its components and which connecting 
words are used. If we combine the two true statement, “Elephants are big,” and, 
“Baseballs are round,” we would consider the resulting statement, “Elephants are 
big and baseballs are round,” to be true. In this book, as in many logic books, 
capital letters near the beginning of the alphabet, such as A, B, and C, are used to 
represent statements and are called statement letters; the symbol ` is a logical 
connective representing and. We agree, then, that if A is true and B is true, A ` B 
(read “A and B”) should be considered true.

PRACTICE 1	 1

a.	 If A is true and B is false, what truth value would you assign to A ` B?
b.	 If A is false and B is true, what truth value would you assign to A ` B?
c.	 If A and B are both false, what truth value would you assign to A ` B?

The expression A ` B is called the conjunction of A and B, and A and B are 
called the conjuncts of this expression. Table 1.1 summarizes the truth value of 
A ` B for all possible truth values of the conjuncts A and B. Each row of the table 

1Answers to practice problems are in the back of the text.
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represents a particular truth value assignment to the statement let-
ters, and the resulting truth value for the compound expression is 
shown.

Another connective is the word or, denoted by the symbol ~. The 
expression A ~ B (read “A or B”) is called the disjunction of A and B, 
and A and B are called the disjuncts of this expression. If A and B are 
both true, then A ~ B would be considered true, giving the first line 
of the truth table for disjunction (Table 1.2).

Table 1.2

A B A ~ B

T T T

T F

F T

F F

Table 1.1

A B A ` B

T T T

T F F

F T F

F F F

PRACTICE 2	 Use your understanding of the word or to complete the truth table for disjunction,  
Table 1.2.

Statements may be combined in the form “if statement 1, then statement 2.” If 
A denotes statement 1 and B denotes statement 2, the compound statement would 
be denoted by A S B (read “A implies B”). The logical connective here is implica-
tion, and it conveys the meaning that the truth of A implies or leads to the truth of 
B. In the implication A S B, A stands for the antecedent statement and B stands 
for the consequent statement. 

The truth table for implication is less obvious than that for conjunction or 
disjunction. To understand its definition, let’s suppose your friend remarks, “If I 
pass my economics test, then I’ll go to the movie Friday.” If your friend passes the 
test and goes to the movie, the remark was true. If your friend passes the test but 
doesn’t go to the movie, the remark was false. If your friend doesn’t pass the test, 
then—whether he or she goes to the movie or not—you could not claim that the 
remark was false. You would probably want to give the benefit of the doubt and say 
that the statement was true. By convention, A S B is considered true if A is false, 
regardless of the truth value of B.

PRACTICE 3	 Summarize this discussion by writing the truth table for A S B.

Table 1.3

A B A S B B S A (A S B) ` (B S A)

T T T T T

T F F T F

F T T F F

F F T T T

The equivalence connective is symbolized by 4. Unlike conjunction, 
disjunction, and implication, the equivalence connective is not really a funda-
mental connective but a convenient shortcut. The expression A 4 B stands for 
(A S B) ` (B S A). We can write the truth table for equivalence by constructing, 
one piece at a time, a table for (A S B) ` (B S A), as in Table 1.3. From this truth 
table, A 4 B is true exactly when A and B have the same truth value.

The connectives we’ve seen so far are called binary connectives because 
they join two expressions together to produce a third expression. Now let’s consider 
a unary connective, a connective acting on one expression to produce a second 
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expression. Negation is a unary connective. The negation of A—symbolized by 
A′—is read “not A.”

Practice 4	 Write the truth table for A′. (It will require only two rows.)

Table 1.4 summarizes the truth values for all of the logical connectives. This 
information is critical to an understanding of logical reasoning.

Table 1.4

A B A ` B A ~ B A S B A 4 B A′

T T T T T T F

T F F T F F

F T F T T F T

F F F F T T

Reminder

A only if B means
A S B

Because of the richness of the English language, words that have differ-
ent shades of meaning are nonetheless represented by the same logical connec-
tive. Table 1.5 shows the common English words associated with various logical 
connectives.

Table 1.5

English Word Logical Connective Logical Expression

and; but; also; in addition; 
moreover

Conjunction A ` B

or Disjunction A ~ B

If A, then B. 
A implies B. 
A, therefore B.
A only if B. 
B follows from A. 
A is a sufficient condition 
for B.
B is a necessary condition 
for A.

Implication A S B

A if and only if B.
A is necessary and 
sufficient for B.

Equivalence A 4 B

not A
It is false that A ...
It is not true that A ...

Negation A′

Suppose that A S B is true. Then, according to the truth table for implication, 
the consequent, B, can be true even though the antecedent, A, is false. So while 
the truth of A leads to (implies) the truth of B, the truth of B does not imply the 
truth of A. The phrase “B is a necessary condition for A” to describe A S B simply 
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Table 1.6

Statement Correct Negation Incorrect Negation

It will rain tomorrow. It is false that it will rain 
tomorrow.

It will not rain tomorrow.

Peter is tall and thin. It is false that Peter is tall 
and thin.

Peter is not tall or he is 
not thin.

Peter is short or fat.

Peter is short and fat.

Too strong a statement. 
Peter fails to have both 
properties (tallness and 
thinness) but may still 
have one property.

The river is shallow or 
polluted.

It is false that the river is 
shallow or polluted.

The river is neither shallow 
nor polluted.

The river is deep and 
unpolluted.

The river is not shallow or 
not polluted.

Too weak a statement. 
The river fails to have 
either property, not just 
fails to have one property.

means that if A is true, then B is necessarily true, as well. “A only if B” describes 
the same thing, that A implies B.

	E XAMPLE 2	 The statement, “Fire is a necessary condition for smoke,” can be restated, “If there 
is smoke, then there is fire.” The antecedent is “there is smoke,” and the conse-
quent is “there is fire.”

PRACTICE 5	 Name the antecedent and consequent in each of the following statements. (Hint: Rewrite 
each statement in if-then form.)

a.	 If the rain continues, then the river will flood.
b.	 A sufficient condition for network failure is that the central switch goes down.
c. 	The avocados are ripe only if they are dark and soft.
d.	 A good diet is a necessary condition for a healthy cat.

	E XAMPLE 3	 Expressing the negation of a statement must be done with care, especially for a 
compound statement. Table 1.6 gives some examples.

PRACTICE 6	 Which of the following represents A′ if A is the statement “Julie likes butter but hates 
cream”?

a.	 Julie hates butter and cream.
b.	 Julie does not like butter or cream.
c.	 Julie dislikes butter but loves cream.
d.	 Julie hates butter or likes cream.
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We can string statement letters, connectives, and parentheses (or brackets) 
together to form new expressions, as in 

(A S B) ` (B S A)

Of course, just as in a computer programming language, certain syntax rules 
(rules on which strings are legitimate) prevail; for example,

A )) `` S BC 

would not be considered a legitimate string. An expression that is a legitimate 
string is called a well-formed formula, or wff. To reduce the number of parenthe-
ses required in a wff, we stipulate an order in which connectives are applied. This 
order of precedence is

	 1.	 connectives within parentheses, innermost parentheses first
	 2.	 ′
	 3.	 `, ~
	 4.	 S

	 5.	 4

This means that the expression A ~ B′ stands for A ~ (B′), not (A ~ B)′. Similarly, 
A ~ B S C means (A ~ B) S C, not A ~ (B S C ). However, we often use paren-
theses anyway, just to be sure that there is no confusion.

In a wff with a number of connectives, the connective to be applied last is the 
main connective. In

A ` (B S C )′

the main connective is `. In

((A ~ B) ` C ) S (B ~ C′)

the main connective is S. Capital letters near the end of the alphabet, such as P, Q, 
R, and S, are used to represent wffs. Thus P could represent a single statement let-
ter, which is the simplest kind of wff, or a more complex wff. We might represent 

((A ~ B) ` C ) S (B ~ C′)

as

P S Q

if we want to hide some of the details for the moment and only concentrate on the 
main connective.

Wffs composed of statement letters and connectives have truth values that 
depend on the truth values assigned to their statement letters. We write the 
truth table for any wff by building up the component parts, just as we did for 
(A S B) ` (B S A). The main connective is addressed in the last column of the 
table.
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Table 1.7

A B B′ A ~ B′ A ~ B ( A ~ B)′ A ~ B′ S ( A ~ B)′

T T F T T F F

T F T T T F F

F T F F T F T

F F T T F T T

If we are making a truth table for a wff that contains n different statement 
letters, how many rows will the truth table have? From truth tables done so far, 
we know that a wff with only one statement letter has two rows in its truth table, 
and a wff with two statement letters has four rows. The number of rows equals the 
number of true-false combinations possible among the statement letters. The first 
statement letter has two possibilities, T and F. For each of these possibilities, the 
second statement letter has two possible values. Figure 1.1a pictures this as a two-
level “tree” with four branches showing the four possible combinations of T and F 
for two statement letters. For n statement letters, we extend the tree to n levels, as 
in Figure 1.1b. The total number of branches then equals 2n. The total number of 
rows in a truth table for n statement letters is also 2n.

	E XAMPLE 4	 The truth table for the wff A ~ B′ S (A ~ B)′ is given in Table 1.7. The main con-
nective, according to the rules of precedence, is implication.

T F

T F T F

F F
T F

T T
T F

Statement letters

1

2

Choices

2 = 21 branches

4 = 22 branches

(a)

T F

T F

T F T F

T F

T F T F

Statement letters

1

2

Choices

2 = 21 branches

4 = 22 branches

3

…… …

8 = 23 branches

n 2n branches

(b)Figure 1.1
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This tree structure also tells us how to enumerate all the T–F com-
binations among the n statement letters when setting up a truth table. If 
we read each level of the tree from bottom to top, it says that the T–F 
values for statement letter n (which will compose the last column of the 
truth table) alternate, those for statement letter n − 1 alternate every 
two values, those for statement letter n − 2 alternate every four values, 
and so forth. Thus a truth table for three statement letters would begin 
as shown in Table 1.8. The values for statement letter C alternate, those 
for statement letter B alternate in groups of two, and those for state-
ment letter A alternate in groups of four, resulting in something like a 
sideways version of the tree. (Reading the rows from the bottom up and 
using 1 for T and 0 for F shows that we are simply counting up from zero 
in binary numbers.)

Table 1.8

A B C

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F

PRACTICE 7	 Construct truth tables for the following wffs.

a.	 (A S B) 4 (B S A) (Remember that C 4 D is true precisely when C and D have the same  
truth value.)

b.	 (A ~ A′) S (B ` B′)
c.	 [(A ` B′) S C′]′
d.	 (A S B) 4 (B′S A′)	

Tautologies

A wff-like item (d) of Practice 7, whose truth values are always true, is called a 
tautology. A tautology is “intrinsically true” by its very structure; it is true no 
matter what truth values are assigned to its statement letters. A simpler example 
of a tautology is A ~ A′; consider, for example, the statement “Today the sun will 
shine or today the sun will not shine,” which must always be true because one 
or the other of these must happen. A wff like item (b) of Practice 7, whose truth 
values are always false, is called a contradiction. A contradiction is “intrinsically 
false” by its very structure. A simpler example of a contradiction is A ` A′; con-
sider “Today is Tuesday and today is not Tuesday,” which is false no matter what 
day of the week it is.

Suppose that P and Q represent two wffs, and it happens that the wff 
P 4 Q is a tautology. If we did a truth table using the statement letters in P 
and Q, then the truth values of the wffs P and Q would agree for every row of 
the truth table. In this case, P and Q are said to be equivalent wffs, denoted by 
P 3 Q. Thus P 3 Q states a fact, namely, that the particular wff P 4 Q is a 
tautology. Practice 7(d) has the form P 4 Q , where P is the wff (A S B) and 
Q is the wff (B′ S A′), and P 4 Q was shown to be a tautology. Therefore, 
(A S B) 3 (B′ S A′).

We will list some basic equivalences, prove one or two of them by construct-
ing truth tables, and leave the rest as exercises. We represent any contradiction by 
0 and any tautology by 1.

REMINDER

A, B, C stand for single 
statement letters; P, Q, 
R, S stand for wffs.
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Some Tautological Equivalences

1a.  A ~ B 3 B ~ A	 1b.  A ` B 3 B ` A	 (commutative properties)

2a.  (A ~ B) ~ C 3 A ~ (B ~ C )	 2b.  (A ` B) ` C 3 A ` (B ` C )	 (associative properties)

3a.  A ~ (B ` C ) 3	 3b.  A ` (B ~ C ) 3	 (distributive properties) 
     (A ~ B) ` (A ~ C )	     (A ` B) ~ (A ` C )

4a.  A ~ 0 3 A	 4b.  A ` 1 3 A	 (identity properties)

5a.  A ~ A′ 3 1	 5b.  A ` A′ 3 0	 (complement properties)

Note that 2a allows us to write A ~ B ~ C with no need for parentheses because 
the grouping doesn’t matter; similarly, 2b allows us to write A ` B ` C.

	E XAMPLE 5	 The truth table in Table 1.9a verifies equivalence 1a, the commutative property for 
disjunction, and that in Table 1.9b verifies 4b, the identity property for conjunc-
tion. Note that only two rows are needed for Table 1.9b because 1 (a tautology) 
cannot take on false truth values.

The equivalences in the list are grouped into five pairs. In each pair, one 
equivalence can be obtained from the other by replacing ` with ~, ~ with `, 0 
with 1, or 1 with 0. Each equivalence in a pair is called the dual of the other. Thus, 
1a and 1b (commutativity of disjunction and commutativity of conjunction) are 
duals of each other. This list of equivalences appears in a more general setting in 
Chapter 8.

Two additional equivalences that are very useful are De Morgan’s laws, 
named for the nineteenth-century British mathematician Augustus De Morgan, 
who first stated them. This theorem is easy to prove (see Exercises 26e and 26f).

A 1 A ` 1 A ` 1 4 A

T T T T

F T F T

Table 1.9

A B A ~ B B ~ A A ~ B 4 B ~ A

T T T T T

T F T T T

F T T T T

F F F F T

(a) (b)

PRACTICE 8	 Verify equivalence 5a.




