

Mathematical Structures
for Computer Science

This page intentionally left blank

Mathematical Structures
for Computer Science

7
Edit ion

Discrete Mathematics and Its Applications

Judith L. Gersting
Indiana University-Purdue University at Indianapolis

W. H. Freeman and Company

A Macmillan Higher Education Company

To my 01102 favorite

discrete structures:

(Adam ` Francine),

(Jason ` Cathryn) S

(Sammie ` Johnny)

Senior Publisher: Ruth Baruth
Executive Editor: Terri Ward
Senior Editor: Roland Cheyney
Assistant Editor: Liam Ferguson
Marketing Manager: Steve Thomas
Media Editor: Laura Judge
Senior Project Editor: Georgia Lee Hadler
Copy Editor: Penelope Hull
Production Coordinator: Susan Wein
Text Designer: Patrice Sheridan
Cover Designer: Victoria Tomaselli
Illustrations: Network Graphics
Composition: codeMantra
Printing and Binding: RR Donnelley

Library of Congress Control Number: 2013951442

ISBN-13: 978-1-4292-1510-7
ISBN-10: 1-4292-1510-0

© 2014, 2007, 2003, 1999, 1993, 1987, 1982 by W. H. Freeman and Company
All rights reserved

Printed in the United States of America
First printing

W. H. Freeman and Company
41 Madison Avenue, New York, NY 10010
Houndmills, Basingstoke RG21 6XS, England
www.whfreeman.com

www.whfreeman.com

Contents in Brief

Preface	 xiii
Note to the Student	 xvi

CHAPTEr 1	 Formal Logic	 001

Chapter 2	 Proofs, Induction, and Number Theory	 097

Chapter 3	 Recursion, Recurrence Relations, and Analysis of
Algorithms	 157

Chapter 4	 Sets, Combinatorics, and Probability	 221

Chapter 5	 Relations, Functions, and Matrices	 327

Chapter 6	 Graphs and Trees	 475

Chapter 7	 Graph Algorithms	 553

Chapter 8	 Boolean Algebra and Computer Logic	 617

Chapter 9	 Modeling Arithmetic, Computation, and Languages	 685

Appendix A	 Derivation Rules for Propositional and Predicate Logic	 803

Appendix B	 Summation and Product Notation	 805

Appendix C	 The Logarithm Function	 809

Answers to Practice Problems	 813

Answers to Odd-Numbered Exercises	 851

Answers to Self-Tests	 949

Index	 959

This page intentionally left blank

Contents

Chapter 1	 Formal Logic	 1

1.1	 Statements, Symbolic
Representation, and
Tautologies	 2

Connectives and Truth Values	 2
Tautologies	 8
Logical Connectives in the
Real World	 10
An Algorithm	 12

Special Interest Page
Can “And” Ever Be “Or”?	 15

Section 1.1	 Review	 16
Exercises 1.1	 16

1.2	 Propositional Logic	 25
Valid Arguments	 25
Derivation Rules for
Propositional Logic	 28
Deduction Method and Other Rules	 32
Verbal Arguments	 33

Section 1.2	 Review	 35
Exercises 1.2	 35

1.3	 Quantifiers, Predicates, and
Validity	 39

Quantifiers and Predicates	 39
Translation	 42
Validity	 48

Section 1.3	 Review	 50
Exercises 1.3	 50

1.4	 Predicate Logic	 58
Derivation Rules for Predicate Logic	 58

Universal Instantiation	 59
Existential Instantiation	 60

Universal Generalization	 61
Existential Generalization	 62

More Work with Rules	 62
Verbal Arguments	 67
Conclusion	 68

Section 1.4	 Review	 69
Exercises 1.4	 69

 1.5	 Logic Programming	 73

Prolog	 73
Horn Clauses and Resolution	 75
Recursion	 79
Expert Systems	 81

Section 1.5	 Review	 82
Exercises 1.5	 82

1.6	 Proof of Correctness	 84

Assertions	 85
Assignment Rule	 87
Conditional Rule	 90

Section 1.6	 Review	 92
Exercises 1.6	 92

Chapter 1	 Review 	 95
On the Computer	 96

Chapter 2	� Proofs, Induction, and
Number Theory	 97

2.1	 Proof Techniques	 98

Theorems and Informal Proofs	 98
To Prove or Not to Prove	 99
Exhaustive Proof	 100
Direct Proof	 101
Contraposition	 103
Contradiction	 104

Serendipity	 106
Common Definitions	 107

Section 2.1	 Review	 107
Exercises 2.1	 107

2.2	 Induction	 110

First Principle of Induction	 110
Proofs by Mathematical
Induction	 112
Second Principle of Induction	 118

Section 2.2	 Review	 122
Exercises 2.2	 122

2.3	 More on Proof of
Correctness	 129

Loop Rule	 129
Euclidean Algorithm	 133

Special Interest Page
Making Safer Software	 136

Section 2.3	 Review	 137
Exercises 2.3	 137

2.4	 Number Theory	 143

The Fundamental Theorem
of Arithmetic	 144
More on Prime Numbers	 148
Euler Phi Function	 149

Section 2.4	 Review	 152
Exercises 2.4	 152

Chapter 2	 Review	 155
On the Computer	 156

Chapter 3	�R ecursion, Recurrence
Relations, and Analysis
of Algorithms	 157

3.1	 Recursive Definitions	 158

Recursively Defined Sequences	 158
Recursively Defined Sets	 162
Recursively Defined Operations	 165
Recursively Defined Algorithms	 166

Section 3.1	 Review	 171
Exercises 3.1	 171

3.2	 Recurrence Relations	 180

Linear First-Order Recurrence
Relations	 180

Expand, Guess, and Verify	 180
A Solution Formula	 182

Linear Second-Order
Recurrence Relations	 188
Divide-and-Conquer
Recurrence Relations	 193

Section 3.2	 Review	 197
Exercises 3.2	 197

3.3	 Analysis of Algorithms 	 203

The General Idea	 203
Analysis Using Recurrence
Relations	 206
Upper Bound
(Euclidean Algorithm)	 210

Special Interest Page
Of Trees % and Pancakes	 211

Section 3.3	 Review	 212
Exercises 3.3	 212

Chapter 3	 Review	 217
	 On the Computer	 218

Chapter 4	� Sets, Combinatorics,
and Probability	 221

4.1	 Sets	 222

Notation	 222
Relationships Between Sets	 224
Sets of Sets	 227
Binary and Unary Operations	 228
Operations on Sets	 230
Set Identities	 233
Countable and Uncountable Sets	 236

Section 4.1	 Review	 239
Exercises 4.1	 239

4.2	 Counting	 252

Multiplication Principle	 252
Addition Principle	 254
Using the Principles Together	 255
Decision Trees	 257

viii	 Contents

Contents	 ix

Section 4.2	 Review	 258
Exercises 4.2	 259

4.3	 Principle of Inclusion and
Exclusion; Pigeonhole
Principle	 263

Principle of Inclusion and
Exclusion	 264
Pigeonhole Principle	 269

Section 4.3	 Review	 269
Exercises 4.3	 270

4.4	 Permutations and
Combinations	 272

Permutations	 272
Combinations	 274
Eliminating Duplicates	 277
Permutations and Combinations
with Repetitions	 279
Generating Permutations
and Combinations	 280

Special Interest Page
Archimedes and the Stomachion	 286

Section 4.4	 Review	 288
Exercises 4.4	 288

4.5	 Binomial Theorem	 294

Pascal’s Triangle	 294
Binomial Theorem and Its Proof	 296
Applying the Binomial Theorem	 298

Section 4.5	 Review	 299
Exercises 4.5	 299

4.6	 Probability	 301

Introduction to Finite
Probability	 301
Probability Distributions	 304
Conditional Probability	 306
Bayes’ Theorem	 308
Expected Value	 310
Binomial Distributions	 313
Average Case Analysis of
Algorithms	 314

Section 4.6	 Review	 315
Exercises 4.6	 315

Chapter 4	 Review	 323
	 On the Computer	 324

Chapter 5	�R elations, Functions,
and Matrices	 327

5.1	 Relations	 328

Binary Relations	 328
Properties of Relations	 332
Closures of Relations	 334
Partial Orderings	 336
Equivalence Relations	 339

Section 5.1	 Review	 344
Exercises 5.1	 345

5.2	 Topological Sorting	 356

Section 5.2	 Review	 361
Exercises 5.2	 362

5.3	 Relations and Databases	 365

Entity-Relationship Model	 365
Relational Model	 366
Operations on Relations	 369
Null Values and Three-valued Logic	373
Database Integrity	 375

Section 5.3	 Review	 376
Exercises 5.3	 376

5.4	 Functions	 381

Definition	 381
Properties of Functions	 388

Onto Functions	 388
One-to-One Functions	 389
Bijections	 390

Composition of Functions	 390
Inverse Functions	 392
Permutation Functions	 394
How Many Functions	 397
Equivalent Sets	 401

Section 5.4	 Review	 402
Exercises 5.4	 402

x	 Contents

5.5	 Order of Magnitude	 412

Function Growth	 412
More on Analysis of Algorithms	 415
The Master Theorem	 417
Proof of the Master Theorem	 419

Section 5.5	 Review	 421
Exercises 5.5	 421

5.6	 The Mighty Mod Function	 423

Hashing	 424
Computer Security	 427

Cryptography	 427
Hashing for Password 	
Encryption	 433

Miscellaneous Applications	 435
Identification Codes	 435
Generating and Decomposing	
Integers	 437
Modular Arithmetic Designs	 438

Section 5.6	 Review	 440
Exercises 5.6	 440

5.7	 Matrices	 446

Terminology	 446
Matrix Operations	 448
Gaussian Elimination	 453
Boolean Matrices	 458

Special Interest Page
Solve Millions of Equations, Faster than Gauss	 460

Section 5.7	 Review	 461
Exercises 5.7	 461

Chapter 5	 Review	 470
	 On the Computer	 472

Chapter 6	 Graphs and Trees	 475

6.1	 Graphs and their
Representations	 476

Definitions of a Graph	 476
Applications of Graphs	 479
Graph Terminology	 481
Isomorphic Graphs	 484
Planar Graphs	 487
Computer Representation
of Graphs	 492

Adjacency Matrix	 492
Adjacency List	 494

Special Interest Page
Isomorphic Protein Graphs	 497

Section 6.1	 Review	 498
Exercises 6.1	 498

6.2	 Trees and Their
Representations	 509

Tree Terminology	 509
Applications of Trees	 511
Binary Tree Representation	 513
Tree Traversal Algorithms	 514
Results about Trees	 519

Section 6.2	 Review	 521
Exercises 6.2	 521

6.3	 Decision Trees	 529

Searching	 529
Lower Bounds on Searching	 532
Binary Tree Search	 533

Sorting	 535

Section 6.3	 Review	 536
Exercises 6.3	 536

6.4	 Huffman Codes	 539

Problem and Trial Solution	 539
Huffman Encoding Algorithm	 542
Justification	 544
Application of Huffman Codes	 546

Section 6.4	 Review	 547
Exercises 6.4	 548

Chapter 6	 Review	 551
	 On the Computer	 552

Chapter 7	 Graph Algorithms	 553

7.1	 Directed Graphs and Binary
Relations; Warshall’s
Algorithm 	 554

Directed Graphs and
Binary Relations	 555
Reachability	 557
Warshall’s Algorithm	 562

Contents	 xi

Section 7.1	 Review	 566
Exercises 7.1	 566

7.2	 Euler Path and Hamiltonian
Circuit	 571

Euler Path Problem	 571
Hamiltonian Circuit Problem	 576

Section 7.2	 Review	 577
Exercises 7.2	 577

7.3	 Shortest Path and Minimal
Spanning Tree	 581

Shortest-Path Problem	 581
Minimal Spanning Tree Problem	 587

Special Interest Page
Pathfinding	 589

Section 7.3	 Review	 591
Exercises 7.3	 591

7.4	 Traversal Algorithms	 596

Depth-First Search	 596
Breadth-First Search	 598
Analysis	 601
Applications	 601

Section 7.4	 Review	 604
Exercises 7.4	 604

7.5	 Articulation Points and
Computer Networks	 607

The Problem Statement	 607
The Idea behind the Algorithm	 608
The Algorithm Itself	 610

Section 7.5	 Review	 612
Exercises 7.5	 612

Chapter 7	 Review	 614
	 On the Computer	 615

Chapter 8	� Boolean Algebra and
Computer Logic	 617

8.1	 Boolean Algebra Structure	 618

Models or Abstractions	 619
Definition and Properties	 620
Isomorphic Boolean Algebras	 626

What is Isomorphism?	 626
Isomorphism as Applied 	
to Boolean Algebra	 628

Section 8.1	 Review	 631
Exercises 8.1	 631

8.2	 Logic Networks	 638

Combinational Networks	 638
Basic Logic Elements	 638
Boolean Expressions	 639
Truth Functions	 640
Networks and Expressions	 641
Canonical Form	 642
Minimization	 645
Programmable Logic 	
Devices	 647

A Useful Network	 648
Other Logic Elements	 650
Constructing Truth Functions	 652

Special Interest Page
Pruning Chips and Programs	 654

Section 8.2	 Review	 655
Exercises 8.2	 655

8.3	 Minimization	 663

Minimization Process	 663
Karnaugh Map	 665

Maps for Three and 	
Four Variables	 666
Using the Karnaugh Map	 668

Quine–McCluskey Procedure	 673

Section 8.3	 Review	 677
Exercises 8.3	 678

Chapter 8	 Review	 683
	 On the Computer	 684

Chapter 9	� Modeling Arithmetic,
Computation, and
Languages	 685

9.1	 Algebraic Structures	 686

Definitions and Examples	 686
Basic Results about Groups	 695
Subgroups	 698
Isomorphic Groups	 702

xii	 Contents

Section 9.1	 Review	 708
Exercises 9.1	 708

9.2	 Coding Theory	 714
Introduction	 714
Background: Homomorphisms
and Cosets	 715
Generating Group Codes	 717
Decoding Group Codes	 723

Section 9.2	 Review	 727
Exercises 9.2	 727

9.3	 Finite-State Machines	 728

Definition	 729
Examples of Finite-State Machines	 729
Recognition	 733
Regular Sets and Kleene’s Theorem	 735
Machine Minimization	 737

Unreachable States	 737
Minimization Procedure	 739

Sequential Networks and
Finite-State Machines	 744

Special Interest Page
FSMs Behind the Game	 749

Section 9.3	 Review	 750
Exercises 9.3	 750

9.4	 Turing Machines	 759

Definition	 760
Turing Machines as Set
Recognizers	 764
Turing Machines as Function
Computers	 767

Church–Turing Thesis	 769
Decision Problems and
Uncomputability	 771

Examples of Decision 	
Problems	 772
Halting Problem	 773

Computational Complexity	 776

Section 9.4	 Review	 778
Exercises 9.4	 779

9.5	 Formal Languages	 782

Classes of Grammars	 789
Formal Languages and
Computational Devices	 792
Context-Free Grammars	 793

Section 9.5	 Review	 795
Exercises 9.5	 795

Chapter 9	 Review	 799
	 On the Computer	 800

Appendix A	 �Derivation Rules for
Propositional and Predicate
Logic	 803

Appendix B	� Summation and Product
Notation	 805

Appendix C	 The Logarithm Function	 809	
		 Answers to Practice Problems	 813
		 Answers to Odd-Numbered

Exercises	 851
		 Answers to Self-Tests	 949

 	 	 Index	 959

Preface

A course in discrete structures (discrete mathematics) played an important role
in Curriculum 68, the very first ACM Computer Science Curriculum Guide:
“This course introduces the student to those fundamental algebraic, logical, and
combinatoric concepts from mathematics needed in the subsequent computer
science courses and shows the applications of these concepts to various areas
of computer science.”1 Fast forward 45 years or so (through mobile comput-
ing, wireless networks, robotics, virtual reality, 3-D graphics, the Internet …)
to the joint ACM/IEEE-CS Computer Science Curricula 2013, where—still—
discrete structures are of fundamental importance. “The material in discrete
structures is pervasive in the areas of data structures and algorithms but ap-
pears elsewhere in computer science as well. For example, an ability to create
and understand a proof—either a formal symbolic proof or a less formal but
still mathematically rigorous argument—is important in virtually every area of
computer science, including (to name just a few) formal specification, verifica-
tion, databases, and cryptography. Graph theory concepts are used in networks,
operating systems, and compilers. Set theory concepts are used in software
engineering and in databases. Probability theory is used in intelligent systems,
networking, and a number of computing applications.”2

This Seventh Edition was guided by Curricula 2013, and virtually all of the
Core Tier 1 and Tier 2 topics for discrete structures from that document are includ-
ed. Covering all those topics can fill a one-semester course, but there is certainly
enough material in this edition to make for a very respectable two-semester course.

However much we as instructors may see the value in this foundational
course, it is a difficult experience for many students, who often view it as a series
of unconnected topics with little or no application to the rest of their chosen field
of study. In the big picture, these topics are bound together by themes of

•	 importance of logical thinking
•	 power of mathematical notation
•	 usefulness of abstractions

but such themes are best appreciated in hindsight. Telling students, “You will
need ideas from this course in many of your future computer science courses,”
is also of little motivation. That’s why it is important to carve out time in your
course syllabus (for either a one-semester or two-semester course) for some of
the applications of this material. Here are topics in this edition that you may

1Communications of the ACM, Vol. 11, Issue 3 (March 1968), pp. 151–197.	
2Computer Science Curricula 2013, Pre-release version, http://cs2013.com

http://cs2013.com

xiv	 Preface

choose from, according to your interests and the interests of your students. Yes,
students will probably see most of these topics in more detail in later computer
science courses, but a quick introduction now can keep their interest and make
your claim of relevance more credible.

Section 1.5	 Logic programming
Sections 1.6 and 2.3	 Proof of correctness
Section 3.3	 Analysis of algorithms
Section 5.3	 Relations and databases
Section 5.6	 The mighty mod function
Section 6.4	 Huffman codes
Section 8.2	 Logic networks
Section 9.2	 Coding theory

In addition, there is a Special Interest Page in each chapter that highlights
interesting applications culled from “the real world.”

Ne w i n the S e v e nth E d it ion

•	 The former Chapters 2 and 3 have been reorganized as Chapters 2, 3, and
4 for better clarity and sequencing

•	 New sections or subsections have been added:

Probability
•	 Bayes’ Theorem
•	 Binomial Distribution

Order of Magnitude (new section)
•	 The Master Theorem
•	 Proof of the Master Theorem

Matrices
•	 Gaussian Elimination

Coding Theory (new section)
•	 Introduction
•	 Background: Homomorphisms and Cosets
•	 Generating Group Codes
•	 Decoding Group Codes

•	 “Special interest pages”—one per chapter—have been introduced to add
relevance and interest to the material being presented.

•	 Answers to all odd-numbered exercises, as opposed to answers to fewer,
selected exercises, appear in the back of the book. When an exercise asks

Preface	 xv

for a proof, the complete proof is given. Otherwise, the answer is just
the answer, not necessarily the solution. A Student Solutions Manual with
solutions for odd-numbered exercises from the book is available from the
Web site at www.whfreeman.com/gersting. The student manual also in-
cludes two sample tests per chapter. A complete Solutions Manual is avail-
able to instructors from the publisher.

•	 Many new exercises have been added, particularly with an eye toward
pairing odd-numbered exercises with similar even-numbered exercises.

•	 Of course, student learning aids such as chapter objectives, practice prob-
lems, reminders, section reviews, and chapter reviews remain.

Web S ite

Online Study Guide

A Web site for the book may be found at www.whfreeman.com/gersting. The Web
pages contain representative new example problems (not contained in the text) for
many of the end-of-section Techniques. Each Technique that has a corresponding
Web page example is marked with the icon W  .

Each example on the Web first states the problem. Then succeeding pages
develop the solution, much as the student would be expected to write it. As the stu-
dent navigates the pages, the solution unfolds step-by-step. A compressed audio
file is also part of each Web page after the initial problem statement. The audio file
contains a first-person stream-of-consciousness thought process about that step of
the solution—why it occurred to the narrator to try this, why it looked promising,
what knowledge was being called on to suggest that this step should come next,
and so on. The point is, students see perfect and complete worked-out proofs in
the textbook and often see them performed by the instructor. Yet when a student
goes home and tries to produce such a solution by himself or herself, he or she is
unsure where to start or how to think about the problem or how to see any pat-
tern to enable a guess as to what to do next. Consequently the student gives up in
frustration. The purpose of the audio narration is to share the “secret picture” that
mathematicians use to solve problems.

To access the problems, after you go to www.whfreeman.com/gersting, select
a chapter section, then select a sample problem and follow its step-by-step process
with the “Next” button.

PowerPoint Slides

Instructors who visit the web site will also have access to PowerPoint slides
accompanying each section of the text.

www.whfreeman.com/gersting
www.whfreeman.com/gersting
www.whfreeman.com/gersting

xvi	 Preface

Ack nowle dgme nts

My thanks to the reviewers of this addition, as well to reviewers of earlier edi-
tions, all of whose help is greatly appreciated.

Elizabeth Adams, James Madison University
Kemal Akkaya, Southern Illinois University
Charles Ashbacher, Mount Mercy College
Barnabas Bede, DigiPen Institute of Technology
Terry J. Bridgeman, Colorado School of Mines
David Casperson, University of Northern British Columbia
Adrienne Decker, SUNY Buffalo
Steve Donaldson, Samford University
Mordechai S. Goodman, Dominican University
Michael A. Gray, American University
Jerrold R. Griggs, University of South Carolina
Joseph Hobart, Okanagan College
Mark Jacobson, University of Northern Iowa
Lisa A. Jamba, University of Northern Florida

Tim Lin, Cal Poly
David Lugenbuhl, Western Carolina University
Damian Lyons, Fordham University
Mariana Maris, Arizona State University
Mikel D. Petty, University of Alabama in Huntsville
Amar Raheja, Cal Poly
J. Ben Schafer, University of Northern Iowa
Ali Shaykhian, Florida Institute of Technology
Shunichi Toida, Old Dominion University
William J. Weber, Southeast Missouri State University
Eric Westlund, Luther University
Hua Yan, Borough of Manhattan Community College
Yu Zhang, Texas A&M Corpus Christi

The folks at W.H. Freeman were very helpful in shepherding this edition
to completion, especially Penny Hull (veteran of many previous editions), Terri
Ward, Roland Cheyney, Liam Ferguson, Georgia Lee Hadler, and Vicki Tomaselli.

Thanks to Russell Kackley for the audio files on the Web site.
My deepest thanks go to my husband, John, ever my most ardent supporter

and dearest friend.

Note to the Stu d e nt

As you go through this book, you’ll encounter many new terms and new ideas.
Try reading with pencil and paper at hand and work the Practice problems as you
encounter them. They are intended to reinforce or clarify some new terminology
or method just introduced; answers are given at the back of the book. Pay atten-
tion also to the Reminders that point out common pitfalls or provide helpful hints.

Be sure to visit the Web site at www.whfreeman.com/gersting for detailed,
worked-out solutions to additional example problems tied to the Techniques in
each section. The Web site solutions are accompanied by audio files that explain
each step. A Student Solutions Manual with solutions for odd-numbered exercises
from the book is available from the Web site. The student manual also includes two
sample tests per chapter.

You may find at first that the thought processes required to solve the exercises
in the book are new and difficult. Your biggest attribute for success will be persever-
ance. Here’s what I tell my students: “If you do not see at first how to solve a problem,
don’t give up, think about it some more; be sure you understand all the terminology
used in the problem, play with some ideas. If no approach presents itself, let it be
and think about it again later. Repeat this process for days on end. When you finally
wake up in the middle of the night with an idea, you’ll know you are putting in the
right amount of effort for this course.” Mathematical results don’t spring fully formed
from the foreheads of mathematical geniuses; well, maybe from mathematical ge-
niuses, but for the rest of us, it takes work, patience, false starts, and perseverance.

Enjoy the experience!

www.whfreeman.com/gersting

Chapter Objectives

After studying this chapter, you will be able to:

•	 Use the formal symbols of propositional logic.
•	 Find the truth value of an expression in propositional logic.
•	 Construct formal proofs in propositional logic, and use such proofs to deter-

mine the validity of English language arguments.
•	 Use the formal symbols of predicate logic.
•	 Find the truth value in some interpretation of an expression in predicate logic.
•	 Use predicate logic to represent English language sentences.
•	 Construct formal proofs in predicate logic, and use such proofs to determine

the validity of English language arguments.
•	 Understand how the programming language Prolog is built on predicate logic.
•	 Mathematically prove the correctness of programs that use assignment state-

ments and conditional statements.

You have been selected to serve on jury duty for a criminal case. The attorney for the
defense argues as follows:

If my client is guilty, then the knife was in the drawer. Either the knife was not in the
drawer or Jason Pritchard saw the knife. If the knife was not there on October 10,
it follows that Jason Pritchard did not see the knife. Furthermore, if the knife was
there on October 10, then the knife was in the drawer and also the hammer was in
the barn. But we all know that the hammer was not in the barn. Therefore, ladies
and gentlemen of the jury, my client is innocent.

	 Question: 	 Is the attorney’s argument sound? How should you vote?

It’s much easier to answer this question if the argument is recast in the notation
of formal logic. Formal logic strips away confusing verbiage and allows us to
concentrate on the underlying reasoning being applied. In fact, formal logic—the
subject of this chapter—provides the foundation for the organized, careful method
of thinking that characterizes any reasoned activity—a criminal investigation, a
scientific experiment, a sociological study. In addition, formal logic has direct
applications in computer science. The last two sections of this chapter explore
a programming language based on logic and the use of formal logic to verify
the correctness of computer programs. Also, circuit logic (the logic governing

1Formal Logic

Chapter

2	 Formal Logic

computer circuitry) is a direct analog of the statement logic of this chapter. We
will study circuit logic in Chapter 8.

	 S e c t i o n 1 . 1 	 Statements, Symbolic Representation,
and Tautologies

Formal logic can represent the statements we use in English to communicate facts
or information. A statement (or proposition) is a sentence that is either true or
false.

	E XAMPLE 1	 Consider the following:

	 a.	 Ten is less than seven.
	 b.	 Cheyenne is the capital of Wyoming.
	 c.	 She is very talented.
	 d.	 There are life forms on other planets in the universe.

Sentence (a) is a statement because it is false. Sentence (b) is a statement because
it is true. Sentence (c) is neither true nor false because “she” is not specified; there-
fore (c) is not a statement. Sentence (d) is a statement because it is either true or
false; we do not have to be able to decide which.

Connectives and Truth Values

In English, simple statements are combined with connecting words like and to
make more interesting compound statements. The truth value of a compound
statement depends on the truth values of its components and which connecting
words are used. If we combine the two true statement, “Elephants are big,” and,
“Baseballs are round,” we would consider the resulting statement, “Elephants are
big and baseballs are round,” to be true. In this book, as in many logic books,
capital letters near the beginning of the alphabet, such as A, B, and C, are used to
represent statements and are called statement letters; the symbol ` is a logical
connective representing and. We agree, then, that if A is true and B is true, A ` B
(read “A and B”) should be considered true.

PRACTICE 1	 1

a.	 If A is true and B is false, what truth value would you assign to A ` B?
b.	 If A is false and B is true, what truth value would you assign to A ` B?
c.	 If A and B are both false, what truth value would you assign to A ` B?

The expression A ` B is called the conjunction of A and B, and A and B are
called the conjuncts of this expression. Table 1.1 summarizes the truth value of
A ` B for all possible truth values of the conjuncts A and B. Each row of the table

1Answers to practice problems are in the back of the text.

		 Section 1.1 Statements, Symbolic Representation, and Tautologies	 3

represents a particular truth value assignment to the statement let-
ters, and the resulting truth value for the compound expression is
shown.

Another connective is the word or, denoted by the symbol ~. The
expression A ~ B (read “A or B”) is called the disjunction of A and B,
and A and B are called the disjuncts of this expression. If A and B are
both true, then A ~ B would be considered true, giving the first line
of the truth table for disjunction (Table 1.2).

Table 1.2

A B A ~ B

T T T

T F

F T

F F

Table 1.1

A B A ` B

T T T

T F F

F T F

F F F

PRACTICE 2	 Use your understanding of the word or to complete the truth table for disjunction,
Table 1.2.

Statements may be combined in the form “if statement 1, then statement 2.” If
A denotes statement 1 and B denotes statement 2, the compound statement would
be denoted by A S B (read “A implies B”). The logical connective here is implica-
tion, and it conveys the meaning that the truth of A implies or leads to the truth of
B. In the implication A S B, A stands for the antecedent statement and B stands
for the consequent statement.

The truth table for implication is less obvious than that for conjunction or
disjunction. To understand its definition, let’s suppose your friend remarks, “If I
pass my economics test, then I’ll go to the movie Friday.” If your friend passes the
test and goes to the movie, the remark was true. If your friend passes the test but
doesn’t go to the movie, the remark was false. If your friend doesn’t pass the test,
then—whether he or she goes to the movie or not—you could not claim that the
remark was false. You would probably want to give the benefit of the doubt and say
that the statement was true. By convention, A S B is considered true if A is false,
regardless of the truth value of B.

PRACTICE 3	 Summarize this discussion by writing the truth table for A S B.

Table 1.3

A B A S B B S A (A S B) ` (B S A)

T T T T T

T F F T F

F T T F F

F F T T T

The equivalence connective is symbolized by 4. Unlike conjunction,
disjunction, and implication, the equivalence connective is not really a funda-
mental connective but a convenient shortcut. The expression A 4 B stands for
(A S B) ` (B S A). We can write the truth table for equivalence by constructing,
one piece at a time, a table for (A S B) ` (B S A), as in Table 1.3. From this truth
table, A 4 B is true exactly when A and B have the same truth value.

The connectives we’ve seen so far are called binary connectives because
they join two expressions together to produce a third expression. Now let’s consider
a unary connective, a connective acting on one expression to produce a second

4	 Formal Logic

expression. Negation is a unary connective. The negation of A—symbolized by
A′—is read “not A.”

Practice 4	 Write the truth table for A′. (It will require only two rows.)

Table 1.4 summarizes the truth values for all of the logical connectives. This
information is critical to an understanding of logical reasoning.

Table 1.4

A B A ` B A ~ B A S B A 4 B A′

T T T T T T F

T F F T F F

F T F T T F T

F F F F T T

Reminder

A only if B means
A S B

Because of the richness of the English language, words that have differ-
ent shades of meaning are nonetheless represented by the same logical connec-
tive. Table 1.5 shows the common English words associated with various logical
connectives.

Table 1.5

English Word Logical Connective Logical Expression

and; but; also; in addition;
moreover

Conjunction A ` B

or Disjunction A ~ B

If A, then B.
A implies B.
A, therefore B.
A only if B.
B follows from A.
A is a sufficient condition
for B.
B is a necessary condition
for A.

Implication A S B

A if and only if B.
A is necessary and
sufficient for B.

Equivalence A 4 B

not A
It is false that A ...
It is not true that A ...

Negation A′

Suppose that A S B is true. Then, according to the truth table for implication,
the consequent, B, can be true even though the antecedent, A, is false. So while
the truth of A leads to (implies) the truth of B, the truth of B does not imply the
truth of A. The phrase “B is a necessary condition for A” to describe A S B simply

		 Section 1.1 Statements, Symbolic Representation, and Tautologies	 5

Table 1.6

Statement Correct Negation Incorrect Negation

It will rain tomorrow. It is false that it will rain
tomorrow.

It will not rain tomorrow.

Peter is tall and thin. It is false that Peter is tall
and thin.

Peter is not tall or he is
not thin.

Peter is short or fat.

Peter is short and fat.

Too strong a statement.
Peter fails to have both
properties (tallness and
thinness) but may still
have one property.

The river is shallow or
polluted.

It is false that the river is
shallow or polluted.

The river is neither shallow
nor polluted.

The river is deep and
unpolluted.

The river is not shallow or
not polluted.

Too weak a statement.
The river fails to have
either property, not just
fails to have one property.

means that if A is true, then B is necessarily true, as well. “A only if B” describes
the same thing, that A implies B.

	E XAMPLE 2	 The statement, “Fire is a necessary condition for smoke,” can be restated, “If there
is smoke, then there is fire.” The antecedent is “there is smoke,” and the conse-
quent is “there is fire.”

PRACTICE 5	 Name the antecedent and consequent in each of the following statements. (Hint: Rewrite
each statement in if-then form.)

a.	 If the rain continues, then the river will flood.
b.	 A sufficient condition for network failure is that the central switch goes down.
c. 	The avocados are ripe only if they are dark and soft.
d.	 A good diet is a necessary condition for a healthy cat.

	E XAMPLE 3	 Expressing the negation of a statement must be done with care, especially for a
compound statement. Table 1.6 gives some examples.

PRACTICE 6	 Which of the following represents A′ if A is the statement “Julie likes butter but hates
cream”?

a.	 Julie hates butter and cream.
b.	 Julie does not like butter or cream.
c.	 Julie dislikes butter but loves cream.
d.	 Julie hates butter or likes cream.

6	 Formal Logic

We can string statement letters, connectives, and parentheses (or brackets)
together to form new expressions, as in

(A S B) ` (B S A)

Of course, just as in a computer programming language, certain syntax rules
(rules on which strings are legitimate) prevail; for example,

A)) `` S BC

would not be considered a legitimate string. An expression that is a legitimate
string is called a well-formed formula, or wff. To reduce the number of parenthe-
ses required in a wff, we stipulate an order in which connectives are applied. This
order of precedence is

	 1.	 connectives within parentheses, innermost parentheses first
	 2.	 ′
	 3.	 `, ~
	 4.	 S

	 5.	 4

This means that the expression A ~ B′ stands for A ~ (B′), not (A ~ B)′. Similarly,
A ~ B S C means (A ~ B) S C, not A ~ (B S C ). However, we often use paren-
theses anyway, just to be sure that there is no confusion.

In a wff with a number of connectives, the connective to be applied last is the
main connective. In

A ` (B S C )′

the main connective is `. In

((A ~ B) ` C ) S (B ~ C′)

the main connective is S. Capital letters near the end of the alphabet, such as P, Q,
R, and S, are used to represent wffs. Thus P could represent a single statement let-
ter, which is the simplest kind of wff, or a more complex wff. We might represent

((A ~ B) ` C ) S (B ~ C′)

as

P S Q

if we want to hide some of the details for the moment and only concentrate on the
main connective.

Wffs composed of statement letters and connectives have truth values that
depend on the truth values assigned to their statement letters. We write the
truth table for any wff by building up the component parts, just as we did for
(A S B) ` (B S A). The main connective is addressed in the last column of the
table.

		 Section 1.1 Statements, Symbolic Representation, and Tautologies	 7

Table 1.7

A B B′ A ~ B′ A ~ B ( A ~ B)′ A ~ B′ S ( A ~ B)′

T T F T T F F

T F T T T F F

F T F F T F T

F F T T F T T

If we are making a truth table for a wff that contains n different statement
letters, how many rows will the truth table have? From truth tables done so far,
we know that a wff with only one statement letter has two rows in its truth table,
and a wff with two statement letters has four rows. The number of rows equals the
number of true-false combinations possible among the statement letters. The first
statement letter has two possibilities, T and F. For each of these possibilities, the
second statement letter has two possible values. Figure 1.1a pictures this as a two-
level “tree” with four branches showing the four possible combinations of T and F
for two statement letters. For n statement letters, we extend the tree to n levels, as
in Figure 1.1b. The total number of branches then equals 2n. The total number of
rows in a truth table for n statement letters is also 2n.

	E XAMPLE 4	 The truth table for the wff A ~ B′ S (A ~ B)′ is given in Table 1.7. The main con-
nective, according to the rules of precedence, is implication.

T F

T F T F

F F
T F

T T
T F

Statement letters

1

2

Choices

2 = 21 branches

4 = 22 branches

(a)

T F

T F

T F T F

T F

T F T F

Statement letters

1

2

Choices

2 = 21 branches

4 = 22 branches

3

…… …

8 = 23 branches

n 2n branches

(b)Figure 1.1

8	 Formal Logic

This tree structure also tells us how to enumerate all the T–F com-
binations among the n statement letters when setting up a truth table. If
we read each level of the tree from bottom to top, it says that the T–F
values for statement letter n (which will compose the last column of the
truth table) alternate, those for statement letter n − 1 alternate every
two values, those for statement letter n − 2 alternate every four values,
and so forth. Thus a truth table for three statement letters would begin
as shown in Table 1.8. The values for statement letter C alternate, those
for statement letter B alternate in groups of two, and those for state-
ment letter A alternate in groups of four, resulting in something like a
sideways version of the tree. (Reading the rows from the bottom up and
using 1 for T and 0 for F shows that we are simply counting up from zero
in binary numbers.)

Table 1.8

A B C

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F

PRACTICE 7	 Construct truth tables for the following wffs.

a.	 (A S B) 4 (B S A) (Remember that C 4 D is true precisely when C and D have the same
truth value.)

b.	 (A ~ A′) S (B ` B′)
c.	 [(A ` B′) S C′]′
d.	 (A S B) 4 (B′S A′)	

Tautologies

A wff-like item (d) of Practice 7, whose truth values are always true, is called a
tautology. A tautology is “intrinsically true” by its very structure; it is true no
matter what truth values are assigned to its statement letters. A simpler example
of a tautology is A ~ A′; consider, for example, the statement “Today the sun will
shine or today the sun will not shine,” which must always be true because one
or the other of these must happen. A wff like item (b) of Practice 7, whose truth
values are always false, is called a contradiction. A contradiction is “intrinsically
false” by its very structure. A simpler example of a contradiction is A ` A′; con-
sider “Today is Tuesday and today is not Tuesday,” which is false no matter what
day of the week it is.

Suppose that P and Q represent two wffs, and it happens that the wff
P 4 Q is a tautology. If we did a truth table using the statement letters in P
and Q, then the truth values of the wffs P and Q would agree for every row of
the truth table. In this case, P and Q are said to be equivalent wffs, denoted by
P 3 Q. Thus P 3 Q states a fact, namely, that the particular wff P 4 Q is a
tautology. Practice 7(d) has the form P 4 Q , where P is the wff (A S B) and
Q is the wff (B′ S A′), and P 4 Q was shown to be a tautology. Therefore,
(A S B) 3 (B′ S A′).

We will list some basic equivalences, prove one or two of them by construct-
ing truth tables, and leave the rest as exercises. We represent any contradiction by
0 and any tautology by 1.

REMINDER

A, B, C stand for single
statement letters; P, Q,
R, S stand for wffs.

		 Section 1.1 Statements, Symbolic Representation, and Tautologies	 9

Some Tautological Equivalences

1a.  A ~ B 3 B ~ A	 1b.  A ` B 3 B ` A	 (commutative properties)

2a.  (A ~ B) ~ C 3 A ~ (B ~ C )	 2b.  (A ` B) ` C 3 A ` (B ` C )	 (associative properties)

3a.  A ~ (B ` C ) 3	 3b.  A ` (B ~ C ) 3	 (distributive properties)
   (A ~ B) ` (A ~ C )	   (A ` B) ~ (A ` C )

4a.  A ~ 0 3 A	 4b.  A ` 1 3 A	 (identity properties)

5a.  A ~ A′ 3 1	 5b.  A ` A′ 3 0	 (complement properties)

Note that 2a allows us to write A ~ B ~ C with no need for parentheses because
the grouping doesn’t matter; similarly, 2b allows us to write A ` B ` C.

	E XAMPLE 5	 The truth table in Table 1.9a verifies equivalence 1a, the commutative property for
disjunction, and that in Table 1.9b verifies 4b, the identity property for conjunc-
tion. Note that only two rows are needed for Table 1.9b because 1 (a tautology)
cannot take on false truth values.

The equivalences in the list are grouped into five pairs. In each pair, one
equivalence can be obtained from the other by replacing ` with ~, ~ with `, 0
with 1, or 1 with 0. Each equivalence in a pair is called the dual of the other. Thus,
1a and 1b (commutativity of disjunction and commutativity of conjunction) are
duals of each other. This list of equivalences appears in a more general setting in
Chapter 8.

Two additional equivalences that are very useful are De Morgan’s laws,
named for the nineteenth-century British mathematician Augustus De Morgan,
who first stated them. This theorem is easy to prove (see Exercises 26e and 26f).

A 1 A ` 1 A ` 1 4 A

T T T T

F T F T

Table 1.9

A B A ~ B B ~ A A ~ B 4 B ~ A

T T T T T

T F T T T

F T T T T

F F F F T

(a) (b)

PRACTICE 8	 Verify equivalence 5a.

